

Academic Year 2020-21

Environment Audit

Consultation Report

Shivajirao Kadam Institute of Technology & Management Near Ralamandal Sanctuary, Tillore Khurd, Indore (M.P.)

PREPARED BY

EMPIRICAL EXERGY PRIVATE LIMITED

Flat No. 201, OM Apartment,214 Indrapuri Colony, Bhawarkuan, Indore – 452 001 (M. P.), India 0731-4948831, 7869327256 Email ID:eempirical18@gmail.com

www.eeplgroups.com

(Academic Year 2021-22)

Academic Year 2020-21

CONTENT

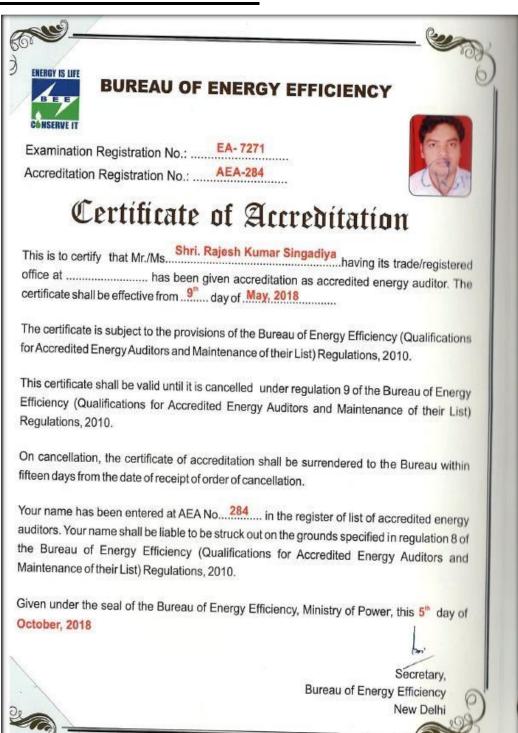
Sr. No.	Items	Page No.
I	Acknowledgement	3
II	Certification Of Accreditation	4
III	Green Monitoring Committee	5
IV	The Audit Team	6
V	Executive Summary	7
Chapter-1	Introduction	8
1.1	About College	8
1.2	Environment Auditing	9
1.5	Objective Of Environment Audit	9
1.6	Target Area Of Environment Audit	10
1.7	Methodology Followed For Conducting Environment Audit	10
Chapter- 2	Water Consumption And Wastewater Sources	13
2.1	Source OF Fresh Water And Uses Area	13
2.2	Water Flow Measurement And Power Measurement	13
2.3	Water Storage Capacity In College Campus	14
2.4	Photographs Of Water Storage Tank	14
2.5	Water Uses Area In College	15
2.6	Reverse Osmosis(RO) in college	15
2.7	Photographs of Water cooler, Taps, Urinal, Wash basin	16
Chapter- 3	Rain Water Harvesting System	17
3.1	About Rain Water Harvesting	17

ACKNOWLEDGEMENT

Empirical Exergy Private Limited (EEPL), Indore takes this opportunity to appreciate & thank the management of Shivajirao Kadam Institute of Technology & Management Near Ralamandal Sanctuary, Tillore Khurd, Indore (M.P.) for giving us an opportunity to conduct energy audit for the college.

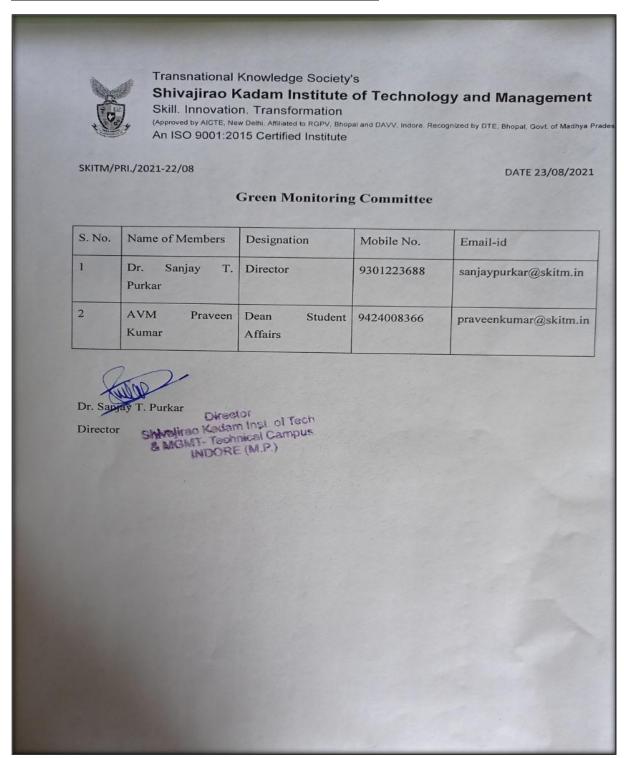
We are indeed touched by the helpful attitude and co-operation of all faculties and technical staff, who rendered their valuable assistance and co-operation the course of study.

Rajesh Kumar Singadiya (Director)


M.Tech (Energy Management), PhD
(Research Scholar)Accredited
Energy Auditor [AEA-0284]
Certified Energy Auditor
[CEA-7271] (BEE, Ministry of
Power, Govt. of India)
Empanelled Energy Auditor with MPUVN,
Bhopal M.P.Lead Auditor ISO50001:2011
[EnMS) from FICCI, DelhiCertified Water
Auditor (NPC, Govt of India)
Charted Engineer [M-1699118], The Institution of Engineers (India)
Member of ISHRAE [5815]

Academic Year 2020-21

Certificate of Accreditation



Academic Year 2020-21

Green Monitoring Committee

Academic Year 2020-21

Audit Team

The study team constituted of the following senior technical executives from **Empirical Exergy Private Limited**,

- Mr. Rakesh Pathak, [Director & Electrical Expert]
- Mr. Rajesh Kumar Singadiya [Director & Accredited Energy Auditor AEA-0284]
- ♣ Mrs. Laxmi Raikwar Singadiya [Energy & Chemical Engineer]
- Mr. Sachin Kumawat [Sr. Project Engineer]
- Mr. Ajay Nahra [Engineer]
- Mr. Charchit Pathak [Mechanical Engineer]
- ♣ Mr. Aakash Kumawat [Assistant Jr. Engineer]

Academic Year 2020-21

EXECUTIVE SUMMARY

The executive summary of the environmental audit report furnished in this section briefly gives the identified water conservation measures, that can be implemented in a phasedmanner to conserve water and increase the productivity of the university.

RECOMMENDATION

FRESH WATER MONITORING SYSTEM:

♣ Install water flow meters (Mechanical or Electronics) in supply network, like college old building and new building for quantify per day water consumption and waste water generation in the college campus.

USE EFFICIENT WATER TAPS

♣ Water saving taps either reduce water flow or automatically switch off to help save water. So, it is highly recommended to install efficient water taps in college campus to reduce water consumption.

USE EFFICIENT URINAL TAPS

♣ Replacing existing inefficient fixtures with water sense labelled flushing urinal can save between 0.5 to 04 litter per flush without sacrificing performance. Installation of water saving flushing urinal will not only reduce water use in facilities but also save money on water bills.

Academic Year 2020-21

CHAPTER-1 INTRODUCTION

1.1 About College

Shivajirao Kadam Institute of Technology and Management (SKITM) was founded in the year 2019, with its first intake as SKITM in 2020, after taking over the Erstwhile Acropolis Technical Campus. SKITM is under the aegis of Transnational Knowledge Society, which was founded in the year 2008. Under the visionary leadership of renowned academician Prof. Shivajirao Kadam, the institution aims to transform the lives of its students and establish itself as the center of excellence in the state of Madhya Pradesh. The institute works on three key principles – Skill, Innovate and Transform. Our unique methodology distinguishes us from the rest of the institutions. We are highly focused on practical aspects of education, we aim to make our students ready to take up the real world challenges which the industry poses at them. We currently have 4 schools which offer B.TECH (CSE, MECH, CIVIL, EC), B.COM, BBA, Integrated BBA-MBA, B.Pharma, MBA as well as Diploma in Mechanical, Civil and Pharmacy. With the unrivalled leadership and the guidance of our Mentors, SKITM is changing the design and nature of education. SKITM will be recognized for the impact its teachings will have on its students and the community at large. Our Extensive Training Sessions, Unique Teaching Methodology, Strong Collaborations, Impactful Certifications and Partnerships make us the up and coming institute in Central India.

Vision

Holistic development of the learner through excellence in education, innovation & research.

Mission

1. To create competitive and technically empowered environment which enable students to develop and discover their potential and become competent to address industrial, societal and global challenges.

Academic Year 2020-21

- 2. To achieve academic excellence in application-oriented research, novelty and creativity leading to emergence of technocrats, leaders, innovators and renowned entrepreneurs.
- 3. To become a top school in country where students are raised with Holistic learning for inculcating core values of professionalism, gender equality, transparency and ethics.
- 4. To establish partnership with globally recognized institutions and organizations to foster students with industrial exposure through extensive hands-on training.
- 5. To ensure overall nurturing and all-round personality development of students by continues monitoring and guidance.

1.1 Environment Auditing

Environment audits can be a highly valuable tool for an institute in a wide range of ways to improve their energy, environment, and economic performance. while reducing wastages and operating costs. Environment audits provide a basis for calculating the economic benefits of water conservation projects by establishing the current rates of water use and their associated cost.

1.2 Objectives of Environment audit

The general objective of the environmental audit is to conduct a water audit and preparation of baseline report on water conservation measures to mitigate consumption and improve quality and sustainable practices.

The specific objectives are:

- ♣ To monitor freshwater consumption in the university and water conservation practices.
- ♣ To assess the quantity of water, usage, the quantity of wastewater generation, andtheir reduction within the university.

Academic Year 2020-21

1.3Target Areas of Environment audit

indicator addresses water sources, water consumption, This irrigation, stormwater, appliances, and fixtures aguifer depletion, and water contamination are taking place at unprecedented rates. It is therefore essential that any environmentally responsible institution should examine its water use practices.

1.4 Methodology followed for conducting Environment audit

Step 1: Walkthrough survey

- Understanding of existing water sourcing, storage, and distribution facility.
- Assessing the water demand and water consumption areas/processes.
- Preparation of detailed water circuit diagram.

Step 2: Secondary Data Collection

- Analyze historic water use and wastewater generation
- Field measurements for estimating current water use
- Metered & unmetered supplies.
- Understanding of "base" flow and usage trends at the site
- Past water bills
- Wastewater treatment scheme & costs etc.

Step 3: Site Environment Audit Planning (based on on-site operations and practices)

- Preparation of water flow diagram to quantify water use at various location
- Wastewater flow measurement and sampling plan

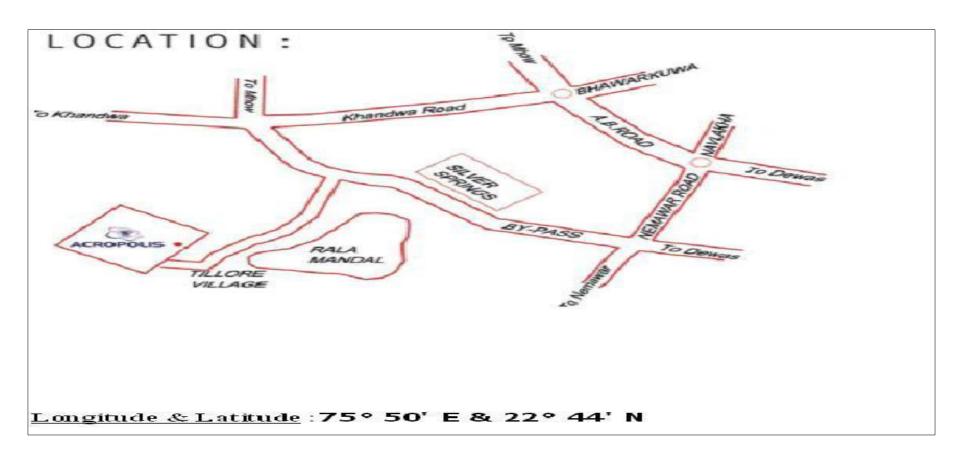
Step 4: Conduction of Detailed Environment Audit & Measurement

- Conduction of field measurements to quantify water/wastewater streams
- Power measurement of pumps/motors
- Preparation of water balance diagram

Academic Year 2020-21

- Establishing water consumption pattern
- Detection of potential leaks & water losses in the system
- Assessment of productive and unproductive usage of water
- ♣ Determine key opportunities for water consumption reduction, reuse & recycle.

Step 5: Preparation of Environment Audit Report


- ♣ Documentation of collected & analyzed water balancing and measurement
- ♣ Projects and procedures to maximize water savings and minimize water losses
- Opportunities for water conservation based on reducing / recycling / reuse and recharge option

Academic Year 2020-21

Satellite Map

Academic Year 2020-21

CHAPTER- 2 WATER CONSUMPTION AND WASTE WATER SOURCES

2.1 Source of fresh water and use area

The freshwater is mainly used for drinking, housekeeping, gardening, domestic activity. The main source of freshwater is borewell for the college. Details of the borewell are given in table 2.1

Table: 2.1 Details of Fresh water sources in college.

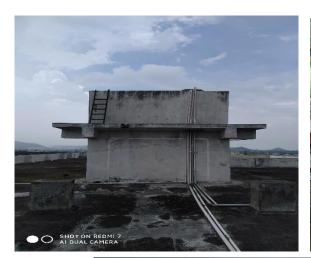
Sr. No.	Fresh Water Sources	Location	Motor Power(HP)	Remark
1	Borewell-01	Behind Engineering Block	5	For fresh water supply
2	Borewell-02	Near Pharmacy Block	5	For fresh water supply
3	Borewell-03	Near CPS Block	5	For fresh water supply

2.2 Water Accounting & Metering system

It was observed that there is requirement of water flow meters on borewells to quantify per day ground water extraction from different sources.

Figure: 2.1 Fresh water supply for college campus.

Academic Year 2020-21


2.3 Water Storge Capacity in College Campus

There is different type of tank available in college for water storage like Overhead RCC tank and PVC tanks etc.

Table: 2.3 Water Storage tank in college

Sr. No	Location	Type of Tank	Unit Capacity (Litter)	Quantity	Total Capacity (Kilo Litter)
1	CPS Building Roof	RCC tank	6000	1	6
2	Engineering Block Roof	RCC tank	24000	1	24
3	Engineering Block Roof	RCC tank	16000	1	16
4	Pharmacy Block Roof	Sintex PVC tank	1000	1	1
5	Near Garden area	RCC tank	60000	1	60

2.4 Photographs of water storage tank

Academic Year 2020-21

2.5 Water use areas in college campus

Water is preliminary used for drinking, domestic, gardening and lab activity. Audit team visited various departments and buildings to determine appliances.

The details of washroom, toilet andtaps are given in table

Table: 2.3

Sr. No.	Location	Urinal	Hand Wash	Toilet	Taps
1	Ground floor	18	10	10	13
2	1 st floor	0	1	0	1
3	2 nd floor	12	6	6	9
4	3 rd floor	12	6	6	9
	Ground floor				
5	(Pharma block)	8	3	2	4
6	1 st floor (Pharma block)	6	34	2	64
7	Canteen	0	3	0	6
	Total	56	63	22	106

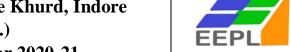
2.6 Reverse Osmosis (RO) in college campus

Table: 2.6 Details of RO in college campus

Sr. No.	Location	RO	Water Cooler
1	Engineering Block 3 rd floor	1	2
2	Engineering Block 1st floor	1	1
3	Ground Floor	1	1
4	Canteen	1	1
5	Pharmacy building ground floor	1	1

Academic Year 2020-21

2.7 Photographs of Water cooler, Taps, Urinal, Wash basin



Academic Year 2020-21

CHAPTER- 3 RAIN WATER HARVESTING SYSTEM

3.1. Rain water harvesting systems

The rainwater harvesting is a technique to capture the rainwater when it precipitates, store that water for direct use or charge the groundwater and use it later.

There are typically four components in a rainwater harvesting system:

- Roof Catchment.
- Collection.
- Transport.
- Infiltration or storage tank and use.

If rainwater is not harvested and channelized its runoffs quickly and flow out through storm-water drains. For storm-water management the recharge pits, percolation pits and porous trenches are constructed to allow storm water to infiltrate inside the soil.

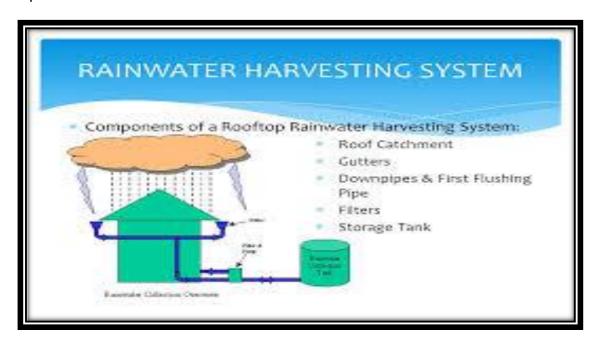


Fig.: 3.1 Components of a rooftop rainwater harvesting system