Department of Electronics and Communication Engineering

Digital Communication

Theory Assignment 3 (29/10/2018)

Date of Submission (12/11/2018)

Q1. Given the data stream 1110010100 sketch the transmitted sequence of pulse for each of the following line codes: (a) Uni-polar non-return – to – zero. (b) Polar non-return – to – zero. (c) Uni-polar return – to – zero. (d) Bipolar return – to – zero. (e) Manchester code. [CO.5002.6]

Q2. An analog signal carries four bits in each signal element. If 1000 signal elements are sent per second, find the baud rate and the bit rate. [CO.5002.6]

Q3. A source produces one of the four possible symbols during each interval having probabilities $P(x_1) = 1/2$, $P(x_2) = 1/4$, $P(x_3) = P(x_4) = 1/8$. Obtain the information content in each of these symbols. [CO.5002.6]

Q4. If there are M equally likely and independent symbols, then prove that the amount of information carried by each symbol will be $I(x_i) = N$ bits where $M = 2^N$ and N is an integer. [CO.5002.6]

Q5. An analog signal is band-limited to B Hz, sampled at a Nyquist rate and samples are quantized into 4 levels Q_1,Q_2,Q_3 , and Q_4 which are independent with probabilities $p_1=p_4=\frac{1}{8}$ and $p_2=p_3=\frac{3}{8}$. Find the information rate of the source. [CO.5002.6]

Q6. Given a binary channel as shown

(a) Find the channel matrix.

(b) Find $P(y_1)$ and $P(y_2)$ when $P(x_1) = P(x_2) = 0.5$.

(c) Find joint probability $P(x_1, y_2)$ and $P(x_2, y_1)$ when $P(x_1) = P(x_2) = 0.5$. [CO.5002.6]

Q7. Prove the following:

(a) H(X|Y) = 0. For a lossless channel

(b) H(Y|X) = 0. For a deterministic channel.

(c) H(X) = H(Y) and H(Y|X) = 0. For a noise less channel.

(d) H(X,Y) = H(X|Y) + H(Y). [CO.5002.5]

Q8. State and explain Shannon's Hartley law. Show that the channel capacity of an ideal AWGN channel with infinite bandwidth is given by $\lim_{B\to\infty} \mathcal{C} = 1.44 \frac{\mathcal{S}}{N_0}$. [CO.5002.6]

Q9. Five source messages are probable to appear as $m_1=0.4, m_2=0.15, m_3=0.15, m_4=0.15, m_5=0.15$. Find coding efficiency using (a) Shannon- Fano coding (b) Huffman coding. [CO.5002.6]

Q10. A DMS X has five symbols x_1, x_2, x_3, x_4P and x_5 with $P(x_1) = 0.4, P(x_2) = 0.19, P(x_3) = 0.16, P(x_4) = 0.15$ and $P(x_5) = 0.1$. (a) Construct Shannon-Fano code for X and calculate the efficiency of the code. (b) Repeat for the Huffman and compare the results. [CO.5002.6]

Prepared by : Dr. Amit Udawat (EC department)

Submission date: 12/11/2018

Dated: 29/10/2018

Page 1

Director
Shivajirao Kadam Institute of Technology &Management - Technical Campus INDORE

all

Electronics & Communication Dept.
Acropolis Technical Campus
Tillore Khurd, Ralamandal, Indone (M.P.)